不同光栅角度下熔融沉积成型PEEK的表面特征、微观结构和力学性能光栅控制器

  需要仔细控制热条件(如挤压温度和环境温度)[13]。为了确保良好的层间粘合并最大限度地减少翘曲和分层,由于温度波动会直接影响层间结合,Vaezi等人表示,Kumar等人研究了熔融层造型过程中工艺参数(腔体温度、床层温度、螺杆速度、沉积速度、喷嘴之间的间距和床面)对层间结合、层厚和宽度的影响[14]。

  吴等人的研究表明,腔体温度对FDM-PEEK样品的翘曲变形的影响比喷嘴温度的影响更大,FDM-PEEK样品的翘曲变形随着腔体温度的升高而减小,而随着喷嘴温度的升高则有抛物线]。此外,胡和他的同事的研究表明,FDM打印过程中温度场的均匀性对于确保PEEK的高机械性能至关重要[16],可以使用热控制器来监控挤出温度。通过有限元分析,王等人研究了FDM制造过程中PEEK的熔化条件和流动性[17]。

  在所有的AM制造方法中,熔融沉积成型(FDM)是最常用的、低成本的热塑性材料3D打印技术,它一直是加工PEEK部件的替代方法[9,10]。然而,由于PEEK的熔化温度高、熔化膨胀率大,特别是其微观结构的堆积现象,在成功实现FDM打印PEEK方面仍然存在一些挑战[11]。目前,打印参数对成型性和力学性能的影响越来越引起人们的兴趣,应深入研究以扩大FDM打印PEEK的生物医学应用范围。

  聚醚醚酮(PEEK)是一种潜在的生物材料,由于其良好的生物相容性和优异的机械性能,可以取代传统的金属或陶瓷部件用于生物医学领域[1-5]。与传统的注塑成型和挤出技术相比,增材制造(AM)在设计和制造定制的复杂功能部件方面具有许多优势,灵活性更大和制造成本更低[6-8]。

  为了研究在3D打印机上加工PEEK的热塑性模型,Valentan等人开发了一种新的FDM机器来生产PEEK医疗植入物,并对制成品的主要力学性能进行了研究。结果显示,FDM-PEEK样品的强度约为成型PEEK拉伸强度的一半[12]。

  原标题:不同光栅角度下熔融沉积成型PEEK的表面特征、微观结构和力学性能

  在所有的增材制造方法中,熔融沉积成型(FDM)是最常用的、低成本的热塑性材料3D打印技术,它一直是加工PEEK部件的替代方法[9,10]。然而,由于PEEK的熔化温度高、熔化膨胀率大,特别是其微观结构的堆积现象,在成功实现FDM打印PEEK方面仍然存在一些挑战[11]。目前,打印参数对成型性和力学性能的影响越来越引起人们的兴趣,应深入研究以扩大FDM打印PEEK的生物医学应用范围。

  建议加热温度为440°C、打印速度为20 mm/s、打印层厚度为0.1 mm的参数,以减少内部缺陷,提高结合强度和表面光洁度。杨等人研究了FDM工艺中各种热加工条件(环境温度、喷嘴温度和热处理方法)与纯PEEK材料的结晶度和机械性能(拉伸强度、弹性模量和断裂

  陕西科技大学辛骅研究团队对不同光栅角度下熔融沉积成型聚醚醚酮(PEEK)的表面特征、微观结构和力学性能进行了研究。这项研究的结果可以为PEEK FDM 3D打印提供参考,使得这一技术在骨科植入物等应用中得以实现。本期谷.专栏将分享这一研究成果。

  2022年2月28日,国家药监局器审中心发布增材制造聚醚醚酮植入物注册审查指导原则的通告(2022年第3号):为进一步规范增材制造聚醚醚酮植入物的管理,国家药监局器审中心组织制定了《增材制造聚醚醚酮植入物注册审查指导原则》。这意味着3D打印-增材制造聚醚醚酮植入物进入到了产业化落地的阶段。

留下评论

您的电子邮箱地址不会被公开。 必填项已用*标注